Deletion of two exons from the Lymnaea stagnalis beta1-->4-N-acetylglucosaminyltransferase gene elevates the kinetic efficiency of the encoded enzyme for both UDP-sugar donor and acceptor substrates.

نویسندگان

  • H Bakker
  • A Van Tetering
  • M Agterberg
  • A B Smit
  • D H Van den Eijnden
  • I Van Die
چکیده

Lymnaea stagnalis UDP-GlcNAc:GlcNAcbeta-R beta1-->4-N-acetylglucosaminyltransferase (beta4-GlcNAcT) is an enzyme with structural similarity to mammalian UDP-Gal:GlcNAcbeta-R beta1-->4-galactosyltransferase (beta4-GalT). Here, we report that also the exon organization of the genes encoding these enzymes is very similar. The beta4-GlcNAcT gene (12.5 kilobase pairs, spanning 10 exons) contains four exons, encompassing sequences that are absent in the beta4-GalT gene. Two of these exons (exons 7 and 8) show a high sequence similarity to part of the preceding exon (exon 6), suggesting that they have originated by exon duplication. The exon in the beta4-GalT gene, corresponding to beta4-GlcNAcT exon 6, encodes a region that has been proposed to be involved in the binding of UDP-Gal. The question therefore arose, whether the repeating sequences encoded by exon 7 and 8 of the beta4-GlcNAcT gene would determine the specificity of the enzyme for UDP-GlcNAc, or for the less preferred UDP-GalNAc. It was found that deletion of only the sequence encoded by exon 8 resulted in a completely inactive enzyme. By contrast, deletion of the amino acid residues encoded by exons 7 and 8 resulted in an enzyme with an elevated kinetic efficiency for both UDP-sugar donors, as well as for its acceptor substrates. These results suggest that at least part of the donor and acceptor binding domains of the beta4-GlcNAcT are structurally linked and that the region encompassing the insertion contributes to acceptor recognition as well as to UDP-sugar binding and specificity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular detection of the infection with Fasciola hepatica in field-collected snails of Galba truncatula and Lymnaea stagnalis from West Azarbaijan, Iran

The liver fluke, Fasciola hepatica, is considered as the most common cause of fasciolosis in both domestic livestock and human. This study was carried out to detect the prevalence of the larval stages of F. hepatica in the snails Galba truncatula and Lymnaea stagnalis in West Azarbaijan, Iran. Snail collection was performed through searching 28 freshwater habitats from May to December 2010. Fol...

متن کامل

Crystal structure of an alpha 1,4-N-acetylhexosaminyltransferase (EXTL2), a member of the exostosin gene family involved in heparan sulfate biosynthesis.

EXTL2, an alpha1,4-N-acetylhexosaminyltransferase, catalyzes the transfer reaction of N-acetylglucosamine and N-acetylgalactosamine from the respective UDP-sugars to the non-reducing end of [glucuronic acid]beta1-3[galactose]beta1-O-naphthalenemethanol, an acceptor substrate analog of the natural common linker of various glycosylaminoglycans. We have solved the x-ray crystal structure of the ca...

متن کامل

Substrate Specificity Provides Insights into the Sugar Donor Recognition Mechanism of O-GlcNAc Transferase (OGT)

O-Linked β-N-acetylglucosaminyl transferase (OGT) plays an important role in the glycosylation of proteins, which is involved in various cellular events. In human, three isoforms of OGT (short OGT [sOGT]; mitochondrial OGT [mOGT]; and nucleocytoplasmic OGT [ncOGT]) share the same catalytic domain, implying that they might adopt a similar catalytic mechanism, including sugar donor recognition. I...

متن کامل

Critical elements of oligosaccharide acceptor substrates for the Pasteurella multocida hyaluronan synthase.

Three-dimensional structures are not available for polysaccharide synthases and only minimal information on the molecular basis for catalysis is known. The Pasteurella multocida hyaluronan synthase (PmHAS) catalyzes the polymerization of the alternating beta1,3-N-acetylglucosamine-beta1,4-glucuronic acid sugar chain by the sequential addition of single monosaccharides to the non-reducing termin...

متن کامل

UDP-GlcNAc concentration is an important factor in the biosynthesis of beta1,6-branched oligosaccharides: regulation based on the kinetic properties of N-acetylglucosaminyltransferase V.

Human beta1,6-N-acetylglucosaminyltransferase V (GnT-V) was expressed by baculovirus-insect cell system, and the purified recombinant enzyme was kinetically characterized. The data obtained were used to establish the kinetic basis of the substrate specificity toward donor nucleotide sugars, and also revealed that K(m) values for the donors are much higher compared to those of other GlcNAc trans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 272 30  شماره 

صفحات  -

تاریخ انتشار 1997